Druggability Assessment in TRAPP Using Machine Learning Approaches
نویسندگان
چکیده
منابع مشابه
Distinguishing Asthma Phenotypes Using Machine Learning Approaches
Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as 'asthma endotypes'. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones wh...
متن کاملArabic Text Categorization using Machine Learning Approaches
Arabic Text categorization is considered one of the severe problems in classification using machine learning algorithms. Achieving high accuracy in Arabic text categorization depends on the preprocessing techniques used to prepare the data set. Thus, in this paper, an investigation of the impact of the preprocessing methods concerning the performance of three machine learning algorithms, namely...
متن کاملMachine-Learning Approaches to Power-System Security Assessment
This paper describes ongoing research and development of machine learning and other complementary automatic learning techniques in a framework adapted to the specific needs of power system security assessment. In the proposed approach, random sampling techniques are considered to screen all relevant power system operating situations, while existing numerical simulation tools are exploited to de...
متن کاملApproaches to machine learning
The field of machine learning strives to develop methods and techniques to automate the acquisition of new information, new skills, and new ways of organizing existing information. In this article, we review the major approaches to machine learning in symbolic domains, covering the tasks of learning concepts from examples, learning search methods, conceptual clustering, and language acquisition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Information and Modeling
سال: 2020
ISSN: 1549-9596,1549-960X
DOI: 10.1021/acs.jcim.9b01185